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UNIT – III 

 Search Trees: 

 Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, AVL 

Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, 

Splay Trees. 

 

Binary Search tree 

In this article, we will discuss the Binary search tree. This article will be very helpful and 

informative to the students with technical background as it is an important topic of their 

course. 

Before moving directly to the binary search tree, let's first see a brief description of the 

tree. 

 

What is a Binary Search tree? 

A binary search tree follows some order to arrange the elements. In a Binary search tree, 

the value of left node must be smaller than the parent node, and the value of right node 

must be greater than the parent node. This rule is applied recursively to the left and 

right subtrees of the root. 

Let's understand the concept of Binary search tree with an example. 
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In the above figure, we can observe that the root node is 40, and all the nodes of the left 

subtree are smaller than the root node, and all the nodes of the right subtree are 

greater than the root node. 

Similarly, we can see the left child of root node is greater than its left child and smaller 

than its right child. So, it also satisfies the property of binary search tree. Therefore, we 

can say that the tree in the above image is a binary search tree. 

Suppose if we change the value of node 35 to 55 in the above tree, check whether the 

tree will be binary search tree or not. 

 

In the above tree, the value of root node is 40, which is greater than its left child 30 but 

smaller than right child of 30, i.e., 55. So, the above tree does not satisfy the property of 

Binary search tree. Therefore, the above tree is not a binary search tree. 

Advantages of Binary search tree 

o Searching an element in the Binary search tree is easy as we always have a hint that 

which subtree has the desired element. 

o As compared to array and linked lists, insertion and deletion operations are faster in BST. 

Example of creating a binary search tree 

Now, let's see the creation of binary search tree using an example. 

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 50 
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o First, we have to insert 45 into the tree as the root of the tree. 

o Then, read the next element; if it is smaller than the root node, insert it as the 

root of the left subtree, and move to the next element. 

o Otherwise, if the element is larger than the root node, then insert it as the root of 

the right subtree. 

Now, let's see the process of creating the Binary search tree using the given data 

element. The process of creating the BST is shown below - 

Step 1 - Insert 45. 

 

Step 2 - Insert 15. 

As 15 is smaller than 45, so insert it as the root node of the left subtree. 

 

Step 3 - Insert 79. 

As 79 is greater than 45, so insert it as the root node of the right subtree. 
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Step 4 - Insert 90. 

90 is greater than 45 and 79, so it will be inserted as the right subtree of 79. 

 

Step 5 - Insert 10. 

10 is smaller than 45 and 15, so it will be inserted as a left subtree of 15. 
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Step 6 - Insert 55. 

55 is larger than 45 and smaller than 79, so it will be inserted as the left subtree of 79. 

 

Step 7 - Insert 12. 

12 is smaller than 45 and 15 but greater than 10, so it will be inserted as the right 

subtree of 10. 
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Step 8 - Insert 20. 

20 is smaller than 45 but greater than 15, so it will be inserted as the right subtree of 15. 
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Step 9 - Insert 50. 

50 is greater than 45 but smaller than 79 and 55. So, it will be inserted as a left subtree 

of 55. 

 

Now, the creation of binary search tree is completed. After that, let's move towards the 

operations that can be performed on Binary search tree. 

We can perform insert, delete and search operations on the binary search tree. 

Let's understand how a search is performed on a binary search tree. 

Searching in Binary search tree 

Searching means to find or locate a specific element or node in a data structure. In 

Binary search tree, searching a node is easy because elements in BST are stored in a 

specific order. The steps of searching a node in Binary Search tree are listed as follows - 

1. First, compare the element to be searched with the root element of the tree. 

2. If root is matched with the target element, then return the node's location. 
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3. If it is not matched, then check whether the item is less than the root element, if it is 

smaller than the root element, then move to the left subtree. 

4. If it is larger than the root element, then move to the right subtree. 

5. Repeat the above procedure recursively until the match is found. 

6. If the element is not found or not present in the tree, then return NULL. 

Now, let's understand the searching in binary tree using an example. We are taking the 

binary search tree formed above. Suppose we have to find node 20 from the below tree. 

Step1: 

 

Step2: 
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Step3: 

 

Now, let's see the algorithm to search an element in the Binary search tree. 

Algorithm to search an element in Binary search tree 

1. Search (root, item)   

2. Step 1 - if (item = root → data) or (root = NULL)   

3. return root   

4. else if (item < root → data)   

5. return Search(root → left, item)   

6. else   

7. return Search(root → right, item)   

8. END if   

9. Step 2 - END   

Now let's understand how the deletion is performed on a binary search tree. We will 

also see an example to delete an element from the given tree. 

Insertion in Binary Search tree 

A new key in BST is always inserted at the leaf. To insert an element in BST, we have to 

start searching from the root node; if the node to be inserted is less than the root node, 

then search for an empty location in the left subtree. Else, search for the empty location 

in the right subtree and insert the data. Insert in BST is similar to searching, as we always 

have to maintain the rule that the left subtree is smaller than the root, and right subtree 

is larger than the root. 
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Now, let's see the process of inserting a node into BST using an example. 

 

 

Deletion in Binary Search tree 

In a binary search tree, we must delete a node from the tree by keeping in mind that the 

property of BST is not violated. To delete a node from BST, there are three possible 

situations occur - 

o The node to be deleted is the leaf node, or, 

o The node to be deleted has only one child, and, 

o The node to be deleted has two children 

We will understand the situations listed above in detail. 
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When the node to be deleted is the leaf node 

It is the simplest case to delete a node in BST. Here, we have to replace the leaf node 

with NULL and simply free the allocated space. 

We can see the process to delete a leaf node from BST in the below image. In below 

image, suppose we have to delete node 90, as the node to be deleted is a leaf node, so 

it will be replaced with NULL, and the allocated space will free. 

 

 

The complexity of the Binary Search tree 

Let's see the time and space complexity of the Binary search tree. We will see the time 

complexity for insertion, deletion, and searching operations in best case, average case, 

and worst case. 

1. Time Complexity 

Operations Best case time 

complexity 

Average case time 

complexity 

Worst case time 

complexity 

Insertion O(log n) O(log n) O(n) 

Deletion O(log n) O(log n) O(n) 

Search O(log n) O(log n) O(n) 
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Where 'n' is the number of nodes in the given tree. 

2. Space Complexity 

Operations Space complexity 

Insertion O(n) 

Deletion O(n) 

Search O(n) 

o The space complexity of all operations of Binary search tree is O(n). 

AVL Tree 

AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree is named 

AVL in honour of its inventors. 

AVL Tree can be defined as height balanced binary search tree in which each node is 

associated with a balance factor which is calculated by subtracting the height of its right 

sub-tree from that of its left sub-tree. 

Tree is said to be balanced if balance factor of each node is in between -1 to 1, 

otherwise, the tree will be unbalanced and need to be balanced. 

Balance Factor (k) = height (left(k)) - height (right(k)) 

If balance factor of any node is 1, it means that the left sub-tree is one level higher than 

the right sub-tree. 

If balance factor of any node is 0, it means that the left sub-tree and right sub-tree 

contain equal height. 

If balance factor of any node is -1, it means that the left sub-tree is one level lower than 

the right sub-tree. 



Department of CSE                                                                                                                               Page 13 of 57 
 

An AVL tree is given in the following figure. We can see that, balance factor associated 

with each node is in between -1 and +1. therefore, it is an example of AVL tree. 

 

Complexity 

Algorithm Average case Worst case 

Space o(n) o(n) 

Search o(log n) o(log n) 

Insert o(log n) o(log n) 

Delete o(log n) o(log n) 
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Operations on AVL tree 

Due to the fact that, AVL tree is also a binary search tree therefore, all the operations are 

performed in the same way as they are performed in a binary search tree. Searching and 

traversing do not lead to the violation in property of AVL tree. However, insertion and 

deletion are the operations which can violate this property and therefore, they need to 

be revisited. 

SN Operation Description 

1 Insertion Insertion in AVL tree is performed in the same way as it is 

performed in a binary search tree. However, it may lead to 

violation in the AVL tree property and therefore the tree may 

need balancing. The tree can be balanced by applying rotations. 

2 Deletion Deletion can also be performed in the same way as it is 

performed in a binary search tree. Deletion may also disturb the 

balance of the tree therefore, various types of rotations are used 

to rebalance the tree. 

Why AVL Tree? 

AVL tree controls the height of the binary search tree by not letting it to be skewed. The 

time taken for all operations in a binary search tree of height h is O(h). However, it can 

be extended to O(n) if the BST becomes skewed (i.e. worst case). By limiting this height 

to log n, AVL tree imposes an upper bound on each operation to be O(log n) where n is 

the number of nodes. 

AVL Rotations 

We perform rotation in AVL tree only in case if Balance Factor is other than -1, 0, and 1. 

There are basically four types of rotations which are as follows: 

1. L L rotation: Inserted node is in the left subtree of left subtree of A 

2. R R rotation : Inserted node is in the right subtree of right subtree of A 

3. L R rotation : Inserted node is in the right subtree of left subtree of A 

https://www.javatpoint.com/insertion-in-avl-tree
https://www.javatpoint.com/deletion-in-avl-tree
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4. R L rotation : Inserted node is in the left subtree of right subtree of A 

Where node A is the node whose balance Factor is other than -1, 0, 1. 

The first two rotations LL and RR are single rotations and the next two rotations LR and 

RL are double rotations. For a tree to be unbalanced, minimum height must be at least 

2, Let us understand each rotation 

1. RR Rotation 

When BST becomes unbalanced, due to a node is inserted into the right subtree of the 

right subtree of A, then we perform RR rotation, RR rotation is an anticlockwise rotation, 

which is applied on the edge below a node having balance factor -2 

 

In above example, node A has balance factor -2 because a node C is inserted in the right 

subtree of A right subtree. We perform the RR rotation on the edge below A. 

2. LL Rotation 

When BST becomes unbalanced, due to a node is inserted into the left subtree of the 

left subtree of C, then we perform LL rotation, LL rotation is clockwise rotation, which is 

applied on the edge below a node having balance factor 2. 

 

https://www.javatpoint.com/rr-rotation-in-avl-tree
https://www.javatpoint.com/ll-rotation-in-avl-tree
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In above example, node C has balance factor 2 because a node A is inserted in the left 

subtree of C left subtree. We perform the LL rotation on the edge below A. 

3. LR Rotation 

Double rotations are bit tougher than single rotation which has already explained above. 

LR rotation = RR rotation + LL rotation, i.e., first RR rotation is performed on subtree and 

then LL rotation is performed on full tree, by full tree we mean the first node from the 

path of inserted node whose balance factor is other than -1, 0, or 1. 

Let us understand each and every step very clearly: 

State Action 

 

A node B has been inserted into the right subtree of A the left 

subtree of C, because of which C has become an unbalanced 

node having balance factor 2. This case is L R rotation where: 

Inserted node is in the right subtree of left subtree of C 

 

As LR rotation = RR + LL rotation, hence RR (anticlockwise) on 

subtree rooted at A is performed first. By doing RR rotation, 

node A, has become the left subtree of B. 

 

After performing RR rotation, node C is still unbalanced, i.e., 

having balance factor 2, as inserted node A is in the left of left 

of C 
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Now we perform LL clockwise rotation on full tree, i.e. on node 

C. node C has now become the right subtree of node B, A is left 

subtree of B 

 

Balance factor of each node is now either -1, 0, or 1, i.e. BST is 

balanced now. 

4. RL Rotation 

As already discussed, that double rotations are bit tougher than single rotation which 

has already explained above. R L rotation = LL rotation + RR rotation, i.e., first LL 

rotation is performed on subtree and then RR rotation is performed on full tree, by full 

tree we mean the first node from the path of inserted node whose balance factor is 

other than -1, 0, or 1. 

State Action 

 

A node B has been inserted into the left subtree of C the right 

subtree of A, because of which A has become an unbalanced 

node having balance factor - 2. This case is RL rotation where: 

Inserted node is in the left subtree of right subtree of A 

https://www.javatpoint.com/rl-rotation-in-avl-tree
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As RL rotation = LL rotation + RR rotation, hence, LL (clockwise) 

on subtree rooted at C is performed first. By doing RR rotation, 

node C has become the right subtree of B. 

 

After performing LL rotation, node A is still unbalanced, i.e. 

having balance factor -2, which is because of the right-subtree 

of the right-subtree node A. 

 

Now we perform RR rotation (anticlockwise rotation) on full 

tree, i.e. on node A. node C has now become the right subtree 

of node B, and node A has become the left subtree of B. 

 

Balance factor of each node is now either -1, 0, or 1, i.e., BST is 

balanced now. 

Q: Construct an AVL tree having the following elements 

H, I, J, B, A, E, C, F, D, G, K, L 

1. Insert H, I, J 
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On inserting the above elements, especially in the case of H, the BST becomes 

unbalanced as the Balance Factor of H is -2. Since the BST is right-skewed, we will 

perform RR Rotation on node H. 

The resultant balance tree is: 

 

2. Insert B, A 
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On inserting the above elements, especially in case of A, the BST becomes unbalanced 

as the Balance Factor of H and I is 2, we consider the first node from the last inserted 

node i.e. H. Since the BST from H is left-skewed, we will perform LL Rotation on node H. 

The resultant balance tree is: 

 

3. Insert E 
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On inserting E, BST becomes unbalanced as the Balance Factor of I is 2, since if we travel 

from E to I we find that it is inserted in the left subtree of right subtree of I, we will 

perform LR Rotation on node I. LR = RR + LL rotation 

3 a) We first perform RR rotation on node B 

The resultant tree after RR rotation is: 

 

3b) We first perform LL rotation on the node I 

The resultant balanced tree after LL rotation is: 
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4. Insert C, F, D 

 

On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H is -2, 

since if we travel from D to B we find that it is inserted in the right subtree of left 

subtree of B, we will perform RL Rotation on node I. RL = LL + RR rotation. 

4a) We first perform LL rotation on node E 

The resultant tree after LL rotation is: 
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4b) We then perform RR rotation on node B 

The resultant balanced tree after RR rotation is: 

 

5. Insert G 
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On inserting G, BST become unbalanced as the Balance Factor of H is 2, since if we travel 

from G to H, we find that it is inserted in the left subtree of right subtree of H, we will 

perform LR Rotation on node I. LR = RR + LL rotation. 

5 a) We first perform RR rotation on node C 

The resultant tree after RR rotation is: 
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5 b) We then perform LL rotation on node H 

The resultant balanced tree after LL rotation is: 

 

6. Insert K 
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On inserting K, BST becomes unbalanced as the Balance Factor of I is -2. Since the BST is 

right-skewed from I to K, hence we will perform RR Rotation on the node I. 

The resultant balanced tree after RR rotation is: 

 

7. Insert L 

On inserting the L tree is still balanced as the Balance Factor of each node is now either, 

-1, 0, +1. Hence the tree is a Balanced AVL tree 
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Deletion in AVL Tree 

Deleting a node from an AVL tree is similar to that in a binary search tree. Deletion may 

disturb the balance factor of an AVL tree and therefore the tree needs to be rebalanced 

in order to maintain the AVLness. For this purpose, we need to perform rotations. The 

two types of rotations are L rotation and R rotation. Here, we will discuss R rotations. L 

rotations are the mirror images of them. 

If the node which is to be deleted is present in the  

left sub-tree of the critical node, then L rotation needs to be applied else if, the node 

which is to be deleted is present in the right sub-tree of the critical node, the R rotation 

will be applied. 

Let us consider that, A is the critical node and B is the root node of its left sub-tree. If 

node X, present in the right sub-tree of A, is to be deleted, then there can be three 

different situations: 

R0 rotation (Node B has balance factor 0 ) 

If the node B has 0 balance factor, and the balance factor of node A disturbed upon 

deleting the node X, then the tree will be rebalanced by rotating tree using R0 rotation. 

The critical node A is moved to its right and the node B becomes the root of the tree 

with T1 as its left sub-tree. The sub-trees T2 and T3 becomes the left and right sub-tree 

of the node A. the process involved in R0 rotation is shown in the following image. 
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Example: 

Delete the node 30 from the AVL tree shown in the following image. 

 

Solution 

In this case, the node B has balance factor 0, therefore the tree will be rotated by using 

R0 rotation as shown in the following image. The node B(10) becomes the root, while 

the node A is moved to its right. The right child of node B will now become the left child 

of node A. 
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R1 Rotation (Node B has balance factor 1) 

R1 Rotation is to be performed if the balance factor of Node B is 1. In R1 rotation, the 

critical node A is moved to its right having sub-trees T2 and T3 as its left and right child 

respectively. T1 is to be placed as the left sub-tree of the node B. 

The process involved in R1 rotation is shown in the following image. 

 

Example 

Delete Node 55 from the AVL tree shown in the following image. 
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Solution : 

Deleting 55 from the AVL Tree disturbs the balance factor of the node 50 i.e. node A 

which becomes the critical node. This is the condition of R1 rotation in which, the node 

A will be moved to its right (shown in the image below). The right of B is now become 

the left of A (i.e. 45). 

The process involved in the solution is shown in the following image. 

 

R-1 Rotation (Node B has balance factor -1) 

R-1 rotation is to be performed if the node B has balance factor -1. This case is treated 

in the same way as LR rotation. In this case, the node C, which is the right child of node 

B, becomes the root node of the tree with B and A as its left and right children 

respectively. 

The sub-trees T1, T2 becomes the left and right sub-trees of B whereas, T3, T4 become 

the left and right sub-trees of A. 

The process involved in R-1 rotation is shown in the following image. 
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Example 

Delete the node 60 from the AVL tree shown in the following image. 

 

Solution: 

in this case, node B has balance factor -1. Deleting the node 60, disturbs the balance 

factor of the node 50 therefore, it needs to be R-1 rotated. The node C i.e. 45 becomes 

the root of the tree with the node B(40) and A(50) as its left and right child. 

 

Search Operation:  
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The search operation in an AVL tree with parent pointers is similar to the search 
operation in a normal Binary Search Tree. Follow the steps below to perform 
search operation: 
 Start from the root node. 
 If the root node is NULL, return false. 
 Check if the current node’s value is equal to the value of the node to be 

searched. If yes, return true. 
 If the current node’s value is less than searched key then recur to the right 

subtree. 
 If the current node’s value is greater than searched key then recur to the left 

subtree. 

Red Black Tree 

A Red Black Tree is a category of the self-balancing binary search tree. It was created in 

1972 by Rudolf Bayer who termed them "symmetric binary B-trees." 

A red-black tree is a Binary tree where a particular node has color as an extra attribute, 

either red or black. By check the node colors on any simple path from the root to a leaf, 

red-black trees secure that no such path is higher than twice as long as any other so 

that the tree is generally balanced. 

Properties of Red-Black Trees 

A red-black tree must satisfy these properties: 

1. The root is always black. 

2. A nil is recognized to be black. This factor that every non-NIL node has two children. 

3. Black Children Rule: The children of any red node are black. 

4. Black Height Rule: For particular node v, there exists an integer bh (v) such that specific 

downward path from v to a nil has correctly bh (v) black real (i.e. non-nil) nodes. Call this 

portion the black height of v. We determine the black height of an RB tree to be the 

black height of its root. 

A tree T is an almost red-black tree (ARB tree) if the root is red, but other conditions 

above hold. 

39.4M 

696 

https://www.geeksforgeeks.org/binary-search-tree-set-1-search-and-insertion/
https://www.geeksforgeeks.org/binary-search-tree-set-1-search-and-insertion/
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Prime Ministers of India | List of Prime Minister of India (1947-2020) 

 

Operations on red-black Trees: 

The search-tree operations TREE-INSERT and TREE-DELETE, when runs on a red-black 

tree with n keys, take O (log n) time. Because they customize the tree, the conclusion 

may violate the red-black properties. To restore these properties, we must change the 

color of some of the nodes in the tree and also change the pointer structure. 

1. Rotation: 

Restructuring operations on red-black trees can generally be expressed more clearly in 

details of the rotation operation. 

 
2. Insertion: 

o Insert the new node the way it is done in Binary Search Trees. 

o Color the node red 
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o If an inconsistency arises for the red-black tree, fix the tree according to the type of 

discrepancy. 

A discrepancy can decision from a parent and a child both having a red color. This type 

of discrepancy is determined by the location of the node concerning grandparent, and 

the color of the sibling of the parent. 

Example: Show the red-black trees that result after successively inserting the keys 

41,38,31,12,19,8 into an initially empty red-black tree. 

Solution: 

Insert 41 
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Insert 19 
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Thus the final tree is 

  

3. Deletion: 

First, search for an element to be deleted 

o If the element to be deleted is in a node with only left child, swap this node with one 

containing the largest element in the left subtree. (This node has no right child). 

o If the element to be deleted is in a node with only right child, swap this node with the 

one containing the smallest element in the right subtree (This node has no left child). 

o If the element to be deleted is in a node with both a left child and a right child, then 

swap in any of the above two ways. While swapping, swap only the keys but not the 

colors. 

o The item to be deleted is now having only a left child or only a right child. Replace this 

node with its sole child. This may violate red constraints or black constraint. Violation of 

red constraints can be easily fixed. 

o If the deleted node is black, the black constraint is violated. The elimination of a black 

node y causes any path that contained y to have one fewer black node. 

o Two cases arise: 

o The replacing node is red, in which case we merely color it black to make up for 

the loss of one black node. 

o The replacing node is black. 
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The strategy RB-DELETE is a minor change of the TREE-DELETE procedure. After splicing 

out a node, it calls an auxiliary procedure RB-DELETE-FIXUP that changes colors and 

performs rotation to restore the red-black properties. 

Example: In a previous example, we found that the red-black tree that results from 

successively inserting the keys 41,38,31,12,19,8 into an initially empty tree. Now show 

the red-black trees that result from the successful deletion of the keys in the order 8, 12, 

19,31,38,41. 

Solution: 
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Delete 38 

 

Delete 41  

No tree 

Splay Tree 

Splay trees are the self-balancing or self-adjusted binary search trees. In other words, we 

can say that the splay trees are the variants of the binary search trees. The prerequisite 

for the splay trees that we should know about the binary search trees. 
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As we already know, the time complexity of a binary search tree in every case. The time 

complexity of a binary search tree in the average case is O(logn) and the time 

complexity in the worst case is O(n). In a binary search tree, the value of the left subtree 

is smaller than the root node, and the value of the right subtree is greater than the root 

node; in such case, the time complexity would be O(logn). If the binary tree is left-

skewed or right-skewed, then the time complexity would be O(n). To limit the skewness, 

the AVL and Red-Black tree came into the picture, having O(logn) time complexity for 

all the operations in all the cases. We can also improve this time complexity by doing 

more practical implementations, so the new Tree data structure was designed, known as 

a Splay tree. 

What is a Splay Tree? 

A splay tree is a self-balancing tree, but AVL and Red-Black trees are also self-balancing 

trees then. What makes the splay tree unique two trees. It has one extra property that 

makes it unique is splaying. 

A splay tree contains the same operations as a Binary search tree, i.e., Insertion, deletion 

and searching, but it also contains one more operation, i.e., splaying. So. all the 

operations in the splay tree are followed by splaying. 

00:30/05:19 

43.4M 
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HTML Tutorial 

Splay trees are not strictly balanced trees, but they are roughly balanced trees. Let's 

understand the search operation in the splay-tree. 

Suppose we want to search 7 element in the tree, which is shown below: 

https://www.javatpoint.com/red-black-tree-vs-avl-tree
https://www.javatpoint.com/data-structure-tutorial
https://www.javatpoint.com/avl-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/binary-search-tree
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To search any element in the splay tree, first, we will perform the standard binary search 

tree operation. As 7 is less than 10 so we will come to the left of the root node. After 

performing the search operation, we need to perform splaying. Here splaying means 

that the operation that we are performing on any element should become the root node 

after performing some rearrangements. The rearrangement of the tree will be done 

through the rotations. 

Note: The splay tree can be defined as the self-adjusted tree in which any operation 

performed on the element would rearrange the tree so that the element on which operation 

has been performed becomes the root node of the tree. 

Rotations 

There are six types of rotations used for splaying: 

1. Zig rotation (Right rotation) 

2. Zag rotation (Left rotation) 

3. Zig zag (Zig followed by zag) 

4. Zag zig (Zag followed by zig) 

5. Zig zig (two right rotations) 

6. Zag zag (two left rotations) 

Factors required for selecting a type of rotation 
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The following are the factors used for selecting a type of rotation: 

o Does the node which we are trying to rotate have a grandparent? 

o Is the node left or right child of the parent? 

o Is the node left or right child of the grandparent? 

Cases for the Rotations 

Case 1: If the node does not have a grand-parent, and if it is the right child of the 

parent, then we carry out the left rotation; otherwise, the right rotation is performed. 

Case 2: If the node has a grandparent, then based on the following scenarios; the 

rotation would be performed: 

Scenario 1: If the node is the right of the parent and the parent is also right of its 

parent, then zig zig right right rotation is performed. 

Scenario 2: If the node is left of a parent, but the parent is right of its parent, then zig 

zag right left rotation is performed. 

Scenario 3: If the node is right of the parent and the parent is right of its parent, 

then zig zig left left rotation is performed. 

Scenario 4: If the node is right of a parent, but the parent is left of its parent, then zig 

zag right-left rotation is performed. 

Now, let's understand the above rotations with examples. 

To rearrange the tree, we need to perform some rotations. The following are the types 

of rotations in the splay tree: 

o Zig rotations 

The zig rotations are used when the item to be searched is either a root node or the 

child of a root node (i.e., left or the right child). 

The following are the cases that can exist in the splay tree while searching: 

Case 1: If the search item is a root node of the tree. 
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Case 2: If the search item is a child of the root node, then the two scenarios will be 

there: 

1. If the child is a left child, the right rotation would be performed, known as a zig right 

rotation. 

2. If the child is a right child, the left rotation would be performed, known as a zig left 

rotation. 

Let's look at the above two scenarios through an example. 

Consider the below example: 

In the above example, we have to search 7 element in the tree. We will follow the below 

steps: 

Step 1: First, we compare 7 with a root node. As 7 is less than 10, so it is a left child of 

the root node. 

Step 2: Once the element is found, we will perform splaying. The right rotation is 

performed so that 7 becomes the root node of the tree, as shown below: 

 

Let's consider another example. 
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In the above example, we have to search 20 element in the tree. We will follow the 

below steps: 

Step 1: First, we compare 20 with a root node. As 20 is greater than the root node, so it 

is a right child of the root node. 

 

Step 2: Once the element is found, we will perform splaying. The left rotation is 

performed so that 20 element becomes the root node of the tree. 
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o Zig zig rotations 

Sometimes the situation arises when the item to be searched is having a parent as well 

as a grandparent. In this case, we have to perform four rotations for splaying. 

Let's understand this case through an example. 

Suppose we have to search 1 element in the tree, which is shown below: 

Step 1: First, we have to perform a standard BST searching operation in order to search 

the 1 element. As 1 is less than 10 and 7, so it will be at the left of the node 7. Therefore, 

element 1 is having a parent, i.e., 7 as well as a grandparent, i.e., 10. 

Step 2: In this step, we have to perform splaying. We need to make node 1 as a root 

node with the help of some rotations. In this case, we cannot simply perform a zig or 

zag rotation; we have to implement zig zig rotation. 

In order to make node 1 as a root node, we need to perform two right rotations known 

as zig zig rotations. When we perform the right rotation then 10 will move downwards, 

and node 7 will come upwards as shown in the below figure: 
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Again, we will perform zig right rotation, node 7 will move downwards, and node 1 will 

come upwards as shown below: 

 

As we observe in the above figure that node 1 has become the root node of the tree; 

therefore, the searching is completed. 

Suppose we want to search 20 in the below tree. 

In order to search 20, we need to perform two left rotations. Following are the steps 

required to search 20 node: 
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Step 1: First, we perform the standard BST searching operation. As 20 is greater than 10 

and 15, so it will be at the right of node 15. 

Step 2: The second step is to perform splaying. In this case, two left rotations would be 

performed. In the first rotation, node 10 will move downwards, and node 15 would 

move upwards as shown below: 

 

In the second left rotation, node 15 will move downwards, and node 20 becomes the 

root node of the tree, as shown below: 
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As we have observed that two left rotations are performed; so it is known as a zig zig 

left rotation. 

o Zig zag rotations 

Till now, we have read that both parent and grandparent are either in RR or LL 

relationship. Now, we will see the RL or LR relationship between the parent and the 

grandparent. 
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Let's understand this case through an example. 

Suppose we want to search 13 element in the tree which is shown below: 

 

Step 1: First, we perform standard BST searching operation. As 13 is greater than 10 but 

less than 15, so node 13 will be the left child of node 15. 

Step 2: Since node 13 is at the left of 15 and node 15 is at the right of node 10, so RL 

relationship exists. First, we perform the right rotation on node 15, and 15 will move 

downwards, and node 13 will come upwards, as shown below: 
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Still, node 13 is not the root node, and 13 is at the right of the root node, so we will 

perform left rotation known as a zag rotation. The node 10 will move downwards, and 

13 becomes the root node as shown below: 



Department of CSE                                                                                                                               Page 50 of 57 
 

 

As we can observe in the above tree that node 13 has become the root node; therefore, 

the searching is completed. In this case, we have first performed the zig rotation and 

then zag rotation; so, it is known as a zig zag rotation. 

o Zag zig rotation 

Let's understand this case through an example. 

Suppose we want to search 9 element in the tree, which is shown below: 
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Step 1: First, we perform the standard BST searching operation. As 9 is less than 10 but 

greater than 7, so it will be the right child of node 7. 

Step 2: Since node 9 is at the right of node 7, and node 7 is at the left of node 10, so LR 

relationship exists. First, we perform the left rotation on node 7. The node 7 will move 

downwards, and node 9 moves upwards as shown below: 
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Still the node 9 is not a root node, and 9 is at the left of the root node, so we will 

perform the right rotation known as zig rotation. After performing the right rotation, 

node 9 becomes the root node, as shown below: 

 

As we can observe in the above tree that node 13 is a root node; therefore, the 

searching is completed. In this case, we have first performed the zag rotation (left 

rotation), and then zig rotation (right rotation) is performed, so it is known as a zag zig 

rotation. 
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Advantages of Splay tree 

o In the splay tree, we do not need to store the extra information. In contrast, in AVL trees, 

we need to store the balance factor of each node that requires extra space, and Red-

Black trees also require to store one extra bit of information that denotes the color of the 

node, either Red or Black. 

o It is the fastest type of Binary Search tree for various practical applications. It is used 

in Windows NT and GCC compilers. 

o It provides better performance as the frequently accessed nodes will move nearer to the 

root node, due to which the elements can be accessed quickly in splay trees. It is used in 

the cache implementation as the recently accessed data is stored in the cache so that we 

do not need to go to the memory for accessing the data, and it takes less time. 

Drawback of Splay tree 

The major drawback of the splay tree would be that trees are not strictly balanced, i.e., 

they are roughly balanced. Sometimes the splay trees are linear, so it will take O(n) time 

complexity. 

Insertion operation in Splay tree 

In the insertion operation, we first insert the element in the tree and then perform the 

splaying operation on the inserted element. 

15, 10, 17, 7 

Step 1: First, we insert node 15 in the tree. After insertion, we need to perform splaying. 

As 15 is a root node, so we do not need to perform splaying. 

 

Step 2: The next element is 10. As 10 is less than 15, so node 10 will be the left child of 

node 15, as shown below: 
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Now, we perform splaying. To make 10 as a root node, we will perform the right 

rotation, as shown below: 

 

Step 3: The next element is 17. As 17 is greater than 10 and 15 so it will become the 

right child of node 15. 

Now, we will perform splaying. As 17 is having a parent as well as a grandparent so we 

will perform zig zig rotations. 
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In the above figure, we can observe that 17 becomes the root node of the tree; 

therefore, the insertion is completed. 

Step 4: The next element is 7. As 7 is less than 17, 15, and 10, so node 7 will be left child 

of 10. 

Now, we have to splay the tree. As 7 is having a parent as well as a grandparent so we 

will perform two right rotations as shown below: 
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Still the node 7 is not a root node, it is a left child of the root node, i.e., 17. So, we need 

to perform one more right rotation to make node 7 as a root node as shown below: 
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